
Exploring Code Clones
in Programmable Logic Controller Software

Hannes Thaller∗, Rudolf Ramler†, Josef Pichler† and Alexander Egyed∗
∗Institute for Software Systems Engineering, Johannes Kepler University Linz, Austria

Email: hannes.thaller@jku.at, alexander.egyed@jku.at
†Software Competence Center Hagenberg GmbH, Austria

Email: rudolf.ramler@scch.at, josef.pichler@scch.at

Abstract—The reuse of code fragments by copying and pasting
is widely practiced in software development and results in code
clones. Cloning is considered an anti-pattern as it negatively
affects program correctness and increases maintenance efforts.
Programmable Logic Controller (PLC) software is no exception
in the code clone discussion as reuse in development and
maintenance is frequently achieved through copy, paste, and
modification. Even though the presence of code clones may
not necessary be a problem per se, it is important to detect,
track and manage clones as the software system evolves.
Unfortunately, tool support for clone detection and manage-
ment is not commonly available for PLC software systems
or limited to generic tools with a reduced set of features. In
this paper, we investigate code clones in a real-world PLC
software system based on IEC 61131-3 Structured Text and
C/C++. We extended a widely used tool for clone detection
with normalization support. Furthermore, we evaluated the
different types and natures of code clones in the studied system
and their relevance for refactoring. Results shed light on the
applicability and usefulness of clone detection in the context of
industrial automation systems and it demonstrates the benefit
of adapting detection and management tools for IEC 611313-3
languages.

1. Introduction

The increasing share of software for Programmable
Logic Controllers (PLCs) and its practical importance have
recently been acknowledged by the authors of the 2016
ranking of programming languages in IEEE Spectrum [1].
They found that languages for PLCs are on the rise, although
in contrast to general-purpose languages such as C, C++ or
Java, they specialize in a niche. Yet their “relative popularity
indicates just how big that niche really is” [1]. With the
growing importance of PLC software, an increasing demand
for software engineering best practices and tool support
is essential. The focus of this paper is on detecting and
analyzing code clones in PLC programs.

Code clones are source code fragments that have been
duplicated for reuse, e.g., by copying and pasting [2]. Code
clones have the reputation to negatively affect program
correctness [3] and to increase maintenance efforts [2].
This form of reuse is widely considered an anti-pattern in
software development [4] and clones are treated as a bad
smell in code [5]. Recent studies have shown that there are
various reasons why code clones are introduced and that the
presence of clones is not per se a problem. However, the
ability to detect, track and manage clones as the software

system evolves is of the essence in successful software
development [6].

PLC systems are no exception in the discussion of
clones as reuse in the industrial automation domain is often
achieved through cloning and modifying of existing software
systems or sub-systems [7]. This is caused by technological
restrictions introduced by programming languages such as
the lack of inheritance or polymorphism, organizational
limits like time constraints, or simply by the system’s com-
plexity. Furthermore, cloning is often used as a lightweight
software product line strategy to cope with various hardware
options and application environments.

A wide range of tools and techniques for clone detection
and management is available for programming languages
such as C, C++ or Java [8]. Similar support for IEC 61131-3
languages is mostly limited to general purpose tools, which
lack analysis features that require the interpretation of the
syntactical structure of the analyzed language. The contri-
butions of this paper are as follows:

• Quantitative results from a code clone analysis in
a real-world PLC software system consisting of
IEC 61131-3 Structured Text (ST) and C/C++.

• The extension of the widely used clone detector Simian
[9] with language support for Structured Text.

• A comprehensive study on the relevance and natures
of the found clones.

• An assessment of whether language support in clone
detectors is of importance or not.

To the best of our knowledge, this paper presents the first
study on clone detection for Structured Text. It sheds light on
the questions about the applicability and usefulness of clone
detection in the context of industrial automation systems and
discusses the need for adapting tools for analyzing programs
based on IEC 61131-3 languages.

Section 2 describes the background and related work on
clone detection. The industry context is presented in Section
3, the results of the code clone analysis in Section 4. Section
5 presents the study on the relevance of found clones, their
nature and empirical results on whether detectors should be
adapted to support IEC 61131-3 languages.

2. Background and Related Work

Duplicating code fragments during software develop-
ment activities has a long history. Definitions, taxonomies,

978-1-5090-6505-9/17/$31.00 c©2015 IEEE

Dog.java

class Dog {

 void happy(){
 int count = Random.nextInt(10);
 for(int i = 0; i < count; i++){
 SoundSystem.makeSound(Noise.BARK);
 if(i % 2 == 0){
 SoundSystem.makeSound(Noise.PANT);
 }
 }
 }

 void anxious(){
 int count = Random.nextInt(20);
 for(int i = 0; i < count; i++){
 SoundSystem.makeSound(Noise.SNARL);
 if(i % 2 == 0){
 SoundSystem.makeSound(Noise.BARK);
 }
 }
 }
}

File 1

Block 2
Block 1

Bird.java

class Bird {

 void happy(){
 int count = Random.nextInt(10);
 for(int i = 0; i < count; i++){
 SoundSystem.makeSound(Noise.TWEET);
 if(i % 2 == 0){
 SoundSystem.makeSound(Noise.FLAP);
 }
 }
 }

 void anxious(){
 int count = 20;
 for(int i = count; i >= 0; i--){
 SoundSystem.makeSound(Noise.FLAP);
 SoundSystem.makeSound(Noise.TWEET);
 }
 }
}

File 2

Block 4
Block 3

Cat.java

class Cat {

 void happy(){
 int count = 10;
 for(int i = count; i >= 0; i--){
 SoundSystem.makeSound(Noise.PURR);
 SoundSystem.makeSound(Noise.MEOW);
 }
 }

 void anxious(){
 int count = 5;
 for(int i = count; i >= 0; i--){
 SoundSystem.makeSound(Noise.HISS);
 SoundSystem.makeSound(Noise.HISS);
 }
 }
}

File 3

Block 6
Block 5

Line Block File

FIGURE 1: Clones may be within a file but also between files and all similar blocks form a clone class (e.g., Block 1-3).

tools for detecting, analyzing, visualizing and managing
code clones exist for several languages and technologies.
The interest in code clones is also reflected in the wealth of
existing research and the widespread use of tools and tech-
niques in quality management and continuous integration.

Clone pairs and clone classes [2] are basic terms used
in the context of clone detection. A clone pair describes two
code blocks, also called fragments, that are equal according
to a similarity operator. A clone class is the set of all blocks
that are equal according to a similarity operator, effectively
forming an equivalence class. Figure 1 shows an example
for a clone pair formed by Block 1 and Block 2, where the
similarity operator ignores literals and constants. Examples
for clones classes are Block 1-3 and Block 4-6, as they all
contain equivalent blocks.

Despite these basic notions, no single holistic definition
exists for code clones. This is due to the different tools
and their associated publications that redefine code clones
according to the capabilities of the respective tool. The issue
is that code clones are intuitively well-understood, but hard
to formalize such that a clear and consistent definition, that
covers all applications, has not been found yet. This study
relies on the definition by Baxter et al. [10] as it abstracts
detection method specifics without being too vague: Code
clones are segments of code that are similar according to
some definition of similarity.

2.1. Clone Taxonomy

A taxonomy based approach helps to align the under-
standing of code clones, complementary to existing defini-
tions. The typical and most frequently used categorization
of code clones [2], [8], [11] is:
Type 1 (Exact Clones): Program fragments that are iden-

tical except for variations in whitespace and comments.
Type 2 (Parameterized Clones): Program fragments that

are structurally/syntactically similar except for changes
in identifiers, literals, types, layout and comments.

Type 3 (Near-Miss Clones): Program fragments that in-
clude insertions or deletions in addition to changes in
identifiers, literals, types and layouts.

Type 4 (Semantic Clones): Program fragments that are
functionally similar (i.e. perform the same computa-
tion) without textual similarity.

These types yield basic insights into the vague term of
similarity in the code clone definition. Code fragments can
be similar based on their textual representation (Type 1-3)
or can have similar functionality without textual similarities
(Type 4). Type 1 and 2 clones are the focus in this paper.
Code clone types also characterize the accepted difference
between code fragments participating in a clone, and they
further define capability levels of detection tools.

2.2. Clone Tools

Clone detection tools can be categorized into detection,
analysis and management tools, which are often integrated
into quality management platforms. Detection tools find
code clones; the results are then filtered, visualized and
categorized by means of analysis tools. Management tools
track existing clones and their evolution to make them an
integral part of the quality management process.

Detection tools can be basically categorized into text, to-
ken, tree, graph, metrics and model-based tools or hybrid ap-
proaches [8], [11]. Text-based detectors use string-matching
algorithms to find similar source code parts. Token-based
methods leverage lexical analysis to extract token sequences
fed into a suffix-tree/array to discover clones. Tree-based
tools expose the abstract syntax tree to apply tree similarity
algorithms. Each approach has advantages and disadvan-
tages that often limit their capabilities in detecting certain
clone types. Text-based tools can only detect Type 1 clones
and by using language dependent normalizations their capa-
bilities improve up to Type 3 clones. Tree-based tools use
computational intensive algorithms but can detect clones up
to Type 3. To summarize, detection tools are the basis of
clone detection and differ in their algorithmic interpretation

of source code, which ultimately affects their capabilities.
A detailed overview of detection tools is given by Bellon et
al. [8], Koschke [12], and Rattan et al. [11].

Clone analysis is concerned with filtration, visualization,
and categorization of clones and is often tightly coupled
with clone management. Common visualizations are tree
maps and scatter plots [13]–[17], but also parallel plots [18]
are used. A tree map uses interactive tiles that reflect the
directory hierarchy colored according to their duplication
intensity. Scatter plots enumerate files along the x and y-
axis where each data point reflects a duplication relationship.
The combination of both provides insight into the clone
relationship between but also the clone intensity within files.
Filtering and ranking of clones help to organize the typically
large result sets of detectors. This is done manually in
conjunction with visualizations or automatically based on
metrics and predefined criteria. For instance, Gemini [16]
or CLICS [19], [20] are tools that make use of metrics
and filtering criteria to provide the most relevant subset
of clones. Categorization sorts clones into views such that
the inspection can be focused on a specific task. These
views may be related to the location (Same File, Same
Directory, etc.), the region (Function to Function Clones,
Macro Clones, etc.), or the block classification (Initialization
Clones, Loop Clones, etc.) [19] of the code fragments.

Management tools help to track the clones such that they
can be actively incorporated into quality assessments and
architectural decision processes, but also to evaluate their
evolution. This is especially important with the increased
demand of modularization in the machine and plant indus-
try [21]. Clones are often deliberately introduced as light
weight variability mechanism, hence they exceed typically
one product life-cycle. One way to manage these clones
is, for example, CloneTracker [22]. It builds a model of
the tracked clones and provides notifications if cloned code
is changed or edited simultaneously. Another example is
ECCO, Extraction and Composition for Clone-and-Own
[23]. It uses fork clones in conjunction with a feature model
to build a proper Software Product Line (SPL). This allows
active reuse of fork clones as they are transformed into a
well-defined corpus of reusable and combinable modules.

2.3. Related Work

Code clones are well investigated by the research com-
munity resulting in a good understanding why source code
is copied. Roy and Cordy [2] presented a comprehensive
overview of reasons for cloning extracted from various
publications. For instance, Kim et al. [24] conducted an
ethnographic study on the code clone behavior of software
developers by recording the file changes. Not only language
limitations forced the developers to copy code, but devel-
opers actively used the copy and paste history to determine
the abstractions within their system. Another example, given
by Kapser and Godfrey [25], describes several different
forking patterns in which large proportions of the system are
copied in order to enable software ports, specific hardware
implementations or (experimental) variants.

These reasons indicate – in contrast to the incentive
earlier publications give [3], [10], [13], [26]–[30] – that
code clones are not universally bad or result of unskilled

programmers. In fact, follow-up publications found quite
the contrary [24], [25], [31]–[37], as Rattan [11] reported,
especially with respect to the stability and faults caused
by code clones. Possible advantages of clones during de-
velopment activities are risk avoidance [2], architectural
improvements [25], performance improvements (e.g., loop
unfolding, reduced call overhead) and improved code sta-
bility [32], [34], [36]. Interestingly many found advantages
also show up as disadvantage indicating that measuring the
impact of clones is a non-trivial task. Concluding, it is
clear that it depends on more than just whether code is
duplicated to make statements about the quality of a system.
Nevertheless, awareness and suitable methods to track and
process clones are recommended, so that benefits of cloning
can be leveraged and drawbacks can be mitigated.

3. Industry Context

The work described in this paper was conducted with our
industry partner, a large high-tech company in the domain
of machinery for metal processing. Together we analyzed a
pre-release version of a machine control software system.
It consisted of modules implemented in the IEC 61131-3
language Structured Text and modules written in the C/C++
programming language. The total size of the software system
was 191 kLOC (Lines Of Code, LOC) with 157 kLOC
in ST and 34 kLOC in C/C++, at the time the study was
conducted. These numbers include only the code authored
by our industry partner.

The software system was part of a large industry project
and had already been evolved over several iterations with an
overall development history of more than two years. In each
iteration, major functional extensions were integrated, tested
and stabilized. Furthermore, every iteration also included
extensions that added support for different machine types
and hardware variants. It was expected that this evolution
led to code clones, as existing software routines were reused
for similar hardware options by following a simple forking
approach. Hence, code fragments up to entire subsystems
were copied from the existing implementation to support the
requirements of the new machine types or hardware variants.

4. Code Clone Analysis

We analyzed the PLC software system with Simian [9], a
proprietary text-based clone detector, and evaluated a subset
of the found clones. Simian can detect Type 1 clones in
all text sources but incorporates additional normalization
features for several common programming languages. These
normalization features were re-implemented for Structured
Text such that all languages used in the studied system (ST
and C/C++) could be analyzed on the same capability level,
i.e., Type 2 clones.

The analyzed source code has in total 99 538 C/C++ and
160 132 ST significant (non-whitespace) lines distributed
over 372 C/C++ and 770 ST files. This includes C/C++
and ST libraries as header files. The source base contains
multiple variants of the system for the different machine
types, consequently, large portions of the code are very
similar, leading to many clones. Many of these clones are
deliberately introduced and manually managed to simplify

TABLE 1: Results of the Simian clone detection on the entirety of the code base including libraries and definition files.

Language Option Files with Clones Duplicated Lines Duplicated Blocks Total Files Total Sig. Lines

C/C++

Default 257 58,741 1,510

372 99,538
Identifier 334 99,620 4,005

Literal 274 62,051 1,828
Identifier/Literal 340 117,080 4,776

ST

Default 552 43,697 4,591

770 160,132
Identifier 633 105,787 10,930

Literal 558 57,557 5,179
Identifier/Literal 650 133,488 12,291

Clone overlap is allowed Minimum number of lines = 5

the product line aspect of the development process. Table 1
contains the number of duplicated lines, blocks, and files
found by the detector. The clone analysis did allow for
clone overlaps in order to find partial copies of variant
files while simultaneously allowing full copies. The number
of duplicated lines is strongly dependent on the minimum
number of lines a clone is allowed to have, which was 5
lines throughout the study. This setting is already fairly low
but was chosen with the subsequent study in mind.

5. Code Clone Study

A group of experts inspected clones found during the
clone analysis (Section 4) within the system of our industry
partner (Section 3). These inspections evaluated the nature
(type) of the clones as well as their relevance for refactoring
in order to help to answer the following questions: 1) What
natures of clones exist within the system?, 2) Is there a
difference between the natures between C/C++ and ST?,
3) How does the tool support influence the relevance of
clones?, and 4) How does the clone selection approach
influence the relevance of clones?

Ultimately, these questions provide the first incentive for
developers of PLC software to adapt existing clone detection
tools for IEC 61131-3 languages such as Structured Text.

5.1. Study Design

A subset of the clone detector results was selected and
presented to a group of experts. The experts inspected
the clones and provided an evaluation of each clone with
respect to their nature and relevance. The responses were
then analyzed and used to explore the relationships and
occurrences of clones, tool support, selection approach, and
languages.

5.1.1. Controlled Variables. The usage of clone detec-
tion tools raises some typical questions related to the tool
configuration (normalizations, minimal line length, etc.), as
well to the selection approach used when analyzing the
discovered clones. Each answer potentially changes the type
of clones and their perceived relevance. Therefore it is
important to understand the impact of these variables when
managing clones in development and maintenance projects.

This study controls for the variables programming language,
tool option, and clone selection approach.

• Language: This variable refers to the used program-
ming languages and captures the heterogeneity of the
system’s code base, which reflects a typical setup
in which multiple technologies are used in concert
to solve a complex problem. The used languages
are C/C++ and Structured Text (ST). C/C++ are
widespread general purpose programming languages
for “system-near” applications. ST is a high-level block
structured language designed for PLCs defined by the
IEC 61131-3 standard. Both languages are procedu-
ral and imperative. They exhibit basic similarities but
nonetheless they differ in syntax and expressiveness.

• Option: Simian offers basic analysis capabilities that
can detect Type 1 clones in any text source. In addition
it provides normalization features for several popular
programming languages to support the detection of
Type 2 clones. In this study the following combinations
of options were used: Text (source code is interpreted
as normal text), Identifier (identifiers are normalized to
a common symbol), Literal (literals are normalized to
a common symbol), and Identifier + Literal (identifiers
and literals are normalized to a common symbol).

• Selection: Ranking and filtering of clones is used to
cope with the usually large result sets. The (confound-
ing) selection variable reflects this behavior with the
following common clone selection approaches: Ran-
dom (clones are selected randomly), Lines (clones are
selected in ascending order according to the number
of lines they span), Blocks (clones are selected in
ascending order according to the number of blocks they
include).

5.1.2. Response Variables. Each clone was evaluated,
1) whether it is relevant for refactoring and, 2) to which
degree it associates to the four natures: Aspect, Structural,
Syntactical or Logical. The resulting five response variables
are given by a 5-point symmetric Likert scale ranging from
Strongly disagree to Strongly agree with the neutral mid-
point Neither agree nor disagree. This evaluation scheme is
based on the findings of Walenstein et al. [38] that human
raters do not agree on whether a clone should be refactored
or not as different developers have different emphasizes.
The Likert scale mitigates this issue by avoiding a binary

TABLE 2: Intraclass Correlation Coefficient (ICC) of the expert responses measured by a two-
way model with a fixed set of k raters.

95% Confidence Interval F Test

Response Type ICC Lower Bound Upper Bound Value df1 df2 Sig

Aspect ICC3k 0.819 0.789 0.845 5.528 479 958 0
Logical ICC3k 0.902 0.886 0.916 10.193 479 958 0
Structural ICC3k 0.962 0.955 0.967 26.080 479 958 0
Syntactical ICC3k 0.505 0.423 0.577 2.019 479 958 0
Relevance ICC3k 0.800 0.767 0.829 4.999 479 958 0

Number of subjects = 480 Number of raters = 3
Two-way consistency averaged-measures ICC

decision and providing different levels of association and
disassociation. Each response is evenly mapped onto a scale
between −1 and 1 and averaged through all raters. This
results in interval scale data with respect to the raters but
also to the number of clones inspected within each group
enabling the usage of standard statistical methods [39].

• Aspect: Clones of this nature contain statements related
to cross-cutting concerns, e.g., debugging, logging, per-
mission and authentication, data monitoring, etc. These
clones are often unavoidable and cannot be removed
with common clone refactoring strategies. Aspect Ori-
ented Programming (AOP) frameworks are a solution
to these clones and a general review on AOP methods
is given by Kurdi [40], while Bengtsson [41] describes
an approach specialized for IEC61131-3.

• Logical: Code fragments of logical nature describe an
algorithmic unit fulfilling a specific task. They contain
a dense occurrence of computations and operations on
data structures nested within control flow constructs.

• Structural: Code fragments are of structural nature if
they exhibit many definitions and initializations. They
build up the structure of a software system. Typical
examples are class, struct or variable definitions or ini-
tializations in header files or global constant definition
files.

• Syntactical: Clones of syntactical nature are the result
of text-based detectors that do not interpret whitespace
or syntactical symbols (braces, brackets, etc.). For ex-
ample, series of closing braces belonging to deeply
nested control flow constructs may be detected as a
clone by a text-based detector.

• Relevance: Relevance captures the likelihood that an
expert would issue a refactoring of a particular clone in
a general maintenance scenario. It reflects the typical
true and false positive classification but avoids the
forced binary decision.

5.2. Procedures

A subset of the found clones from Section 4 was selected
and presented to three experts. Each expert was briefed in
the meaning of the response variables. Each rater was free
to evaluate the clones on his own pace and the inspection
sessions were done self-managed. Each of the experts had a
very strong background in software engineering. The aver-

age experience of the experts was 11.33 years (SD = 4.04
years).

Evaluation procedures computed the Inter-Rater Relia-
bility (IRR) to quantify consistency and agreement among
experts. Further, a linear model was fitted to expose re-
lationships between the relevance of clones and the other
variables. Finally, a set of hypothesis tests were conducted
to give a further incentive on whether tool support specific
for IEC 61131-3 languages are justified.

5.3. Evaluation

Overall 480 clones distributed over 32 groups (2 lan-
guages × 4 options × 4 selection approaches) with each
containing 15 clones were inspected. This results in a total
of 1440 inspections (480 clones × 3 raters) conducted by the
experts. A two-way, consistency, averaged, Intraclass Corre-
lation Coefficient (ICC) measure [42] was used to assess the
reliability of the 1440 inspections with respect to the nature
and relevance. Results within Table 2 show that there was
a high degree of agreement among the expert ratings over
the 480 clones. The consistency was excellent (Cicchetti
interpretation guidelines [43]), except for the Syntactical
nature only being fair (ICC3kSyntactical = 0.505). Given
the high ICC, a minimal amount of measurement error was
introduced by the experts affecting the power of subsequent
analysis. Ratings on the syntactical nature were deemed too
erroneous therefore excluded from further analysis.

Figure 2 shows the expert averaged inspection result
distributions for the natures Aspect, Logical and Structural
as well as for Relevance. The left facet captures inspections
of clones detected only via the Text mode of the detector. On
the right facet are inspections of clones detected with addi-
tional normalizations (Support) in place, i.e., normalization
of identifiers, literals or both. The distributions indicate that
the experts had a clear idea whether a clone is positively
associated with a nature or not. This can be seen by the
slim bellies in the neutral region of the response scale.

Clones are not associated with the Aspect nature for
C/C++ in the text mode. This slightly changes with the
usage of normalization support indicated by the longer tail
of the violin shape. ST clones are stronger associated with
the Aspect nature indicted by the third quartile reaching
beyond the neutral region of the response scale. However,
the central tendency is still in the disagree range for both
detector capability modes. Logical clones are scarce and

FIGURE 2: Responses with respect to the languages and natures. For easier interpretation the plot uses the Likert labels on the response axis (x-axis)
although being values between -1 and 1. The Support facet includes responses from Identifier, Literal and Identifier/Literal option.

the central tendency for C/C++ and ST are both in the
strongly disagree area. The outliers indicate the few clones
that contain algorithmic content. Most Logical clones were
found in the text mode for ST, nevertheless, the tendency is
still towards a disassociation. Many clones found in C/C++
are of Structural nature indicated by the median located
at strongly agree. The normalization support increases the
number of Structural clones even more. For C/C++ the first
quartile moves towards the strongly agree region, for ST
a shift from dissociation to an association in the central
tendency of the responses is measured.

Relevance is slightly worse for ST compared to C/C++
as the median shows, nevertheless using the additional sup-
port removes this offset and places both into the strong
positive range.

5.3.1. Linear Model. A multivariate linear regression was
calculated to predict Relevance based on Language, Option,
Selection but also through the natures Logical and Struc-
tural. (Note: Syntactical has been excluded because of an
insufficient reliability of the ratings and Aspect did not reach
significance.) The maximum positive response of Relevance
is 1 for a perfect association, 0 for neutral and −1 for a
perfect disassociation. A significant regression equation was
found (F (28, 451) = 40.04, p < 2.2 · 10−16), with an R2

of .713. Interactions between Language and Option, Option
and Selection, and between Selection and the included na-
tures were significant. Regression residuals show acceptable
departures from normality and parallel lines as a pattern.
Patterns were expected because of the Likert scale being
averaged by only three raters. An unacceptable variation
in the variances was detected, therefore heteroscedasticity

corrected hypothesis tests were conducted.
The linear model shows a strong positive logarithmic

relationship to the number of lines a clone spans, increasing
its relevance by 0.1 for each magnitude in lines. Clones
from ST have a lower base relevance compared to C/C++
clones (−0.22) but strong positive significant interactions
(0.18 − 0.26) with the different options. Similar, interac-
tions that constitute blocks and normalizations in which
identifiers are normalized (Identifier, Identifier+Literal), are
positive significant with estimates between 0.29− 0.37. All
these coefficients indicate combinations of options, selection
methods and languages that greatly increase the relevance
of clones. In terms of nature, there were strong significant
coefficients that represent the interaction between Structural
or Logical with the (between file) blocks selection method.

5.3.2. Statistical Tests. The planned tests investigated
whether there is a statistically significant effect in Relevance
between different groups of clones. Contrasts measure ef-
fects within and between languages given the text mode
and the average of all normalizations but also the effects
of selection methods. Table 3 contains contrasts and their
respective hypothesis tests with free [44] adjusted p values
that account for multiple comparisons. Test 2 and 3 compare
the differences between text mode and additional support
within the two languages where both reach significance,
although ST with a larger effect. No marginal significant
effect between random selection, and block or line oriented
selection approaches could be found (Test 4). However, the
low p-value and the existence of interactions indicate that
significant effects between specific levels of the variables are
present. Tests 6, 7 and 8 represent between language tests

TABLE 3: Significance tests of specific contrasts with respect to the depended variable Relevance.

Contrast 95% Confidence Interval

Language Option Selection Mean Diff. Std. Error Lower Bound Upper Bound Sig.

1 Language Text - Support Selection -0.225 0.034 -0.316 -0.135 4.82 · 10−10 ***
2 C/C++ Text - Support Selection -0.116 0.035 -0.209 -0.023 0.005 **
3 ST Text - Support Selection -0.335 0.058 -0.488 -0.182 6.78 · 10−8 ***
4 Language Option Random - (Blocks, Lines) 0.063 0.027 -0.011 0.136 0.074 .
5 Language Option Lines - Blocks 0.007 0.051 -0.128 0.143 0.985

6 C/C++ - ST Option Selection 0.052 0.031 -0.030 0.136 0.202

7 C/C++ - ST Text Selection 0.217 0.067 0.040 0.394 0.005 **
8 C/C++ - ST Support Selection -0.002 0.030 -0.083 0.079 0.986

Sig. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 Adjusted p values – free method

with no marginal effect (Test 6). Test 7 shows a significant
difference of clones between the two languages given that
they were detected with the text mode. Test 8 shows that
this significance is not found if clones are detected with
additional normalizations.

5.4. Interpretation

The results show that the tool support has a positive
effect on the relevance of clones. This can be seen in
Figure 2 where the median and first quartile moves into
the strong positive region, but also in the hypothesis tests.
This positive effect is given in the within language tests
(Test 2 & 3) but also in between languages tests where the
initial significant difference is removed by the additional
normalization features. The between language effect is most
likely caused by the header files (.h-files) of C/C++ that
introduce more structural duplicates, which in hindsight are
often relevant (linear model coefficient).

The selection approach does not influence the relevance
of clones on average. However, there were positive effects
associated with selection methods based on the number of
blocks that are shared between files.

Most clones are of Structural nature and the usage of
normalizations increases their total proportions making them
more likely to be encountered. Logical clones are inversely
proportional to structural clones and therefore less often
encountered with normalizations. Clones of Aspect nature
are mostly found with a low minimum line count of clones
but remain strongly dependent on the application context.
The nature of clones between the languages is fairly similar
with mostly structural clones and some logical clones. ST
code contained more aspect clones nevertheless these are
less prevalent if normalizations are used.

6. Threats to Validity

The study faces threats to validity that might reduce the
power of the analysis. First, the generalization of results
is limited because only one software system was analyzed.
However, the system is a real-world example and the applied
development approach can be considered representative for
many other evolving software systems for industrial automa-
tion [7]. Furthermore, the choice of the analysis tool and its

implementation, as the experts and their specific background
in software development may also have introduced a bias.
Finally, the confounding configuration problem discussed by
Wang [45] might be an issue. We chose the minimal line
count for a clone fairly low such that aspect clones are easier
spotted.

7. Summary and Conclusions

In this paper, we presented the results from the analysis
of code clones in a real-world PLC software system, which
has been evolved over several development iterations as part
of a large industry project. The software system contained
code written in C/C++ and in IEC 61131-3 Structured Text.

We found that clones do exist in PLC software systems
regardless of the applied programming language. Awareness
for clones is an important aspect of professional software
development, independent whether they are viewed positive
or negative. Industry projects require support for detecting,
tracking and managing clones as software systems evolve.
Similarly to previous studies [7], we can also conclude that
the existing tool support for PLC languages with respect
to clone detection is insufficient. Furthermore, we found
that language adaptations for detectors, that enable the use
of normalizations, improve the relevance of clones signif-
icantly. This is especially true for maintenance scenarios
focusing on structural deficiencies. Concluding, companies
that develop PLC systems can justify investments in clone
detector adaptations. These investments widen the range
of clone detection, analysis and management tools and
strengthen professional software development within the
industrial automation industry.

Future work includes methodologies for efficient filter-
ing of clones based on their nature through complexity
metrics and the repetition of the study on other PLC software
systems including systems from different industry partners.

Acknowledgments

The research reported in this paper has been supported
by the Austrian Ministry for Transport, Innovation and
Technology, the Federal Ministry of Science, Research and
Economy, and the Province of Upper Austria in the frame
of the COMET Center SCCH (FFG #844597).

References
[1] S. Cass, “The 2016 Top Programming Languages,” 2016.

[Online]. Available: http://spectrum.ieee.org/computing/software/
the-2016-top-programming-languages

[2] C. K. Roy and J. R. Cordy, “A Survey on Software Clone Detection
Research,” Queen’s School of Computing TR, vol. 115, p. 115, 2007.

[3] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do
code clones matter?” in Proceedings - International Conference on
Software Engineering, 2009, pp. 485–495.

[4] W. H. Brown, R. C. Malveau, H. W. McCormick, and T. J. Mow-
bray, AntiPatterns: refactoring software, architectures, and projects
in crisis. John Wiley & Sons, Inc., 1998.

[5] M. Fowler and K. Beck, Refactoring : improving the design of
existing code, ser. The Addison-Wesley object technology series.
Boston (Mass.), San Francisco (Calif.), Paris: Addison-Wesley, 1999.

[6] R. Koschke, “Frontiers of software clone management,” in Frontiers
of Software Maintenance, 2008. FoSM 2008. IEEE, 2008, pp. 119–
128.

[7] B. Vogel-Heuser, A. Fay, I. Schaefer, and M. Tichy, “Evolution of
software in automated production systems: Challenges and research
directions,” Journal of Systems and Software, vol. 110, pp. 54–84,
2015.

[8] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and evaluation of clone detection tools,” IEEE Transactions
on Software Engineering, vol. 33, no. 9, pp. 577–591, 2007.

[9] S. Harris, “Simian - Similarity Analyser,” 2003. [Online]. Available:
http://www.harukizaemon.com/simian

[10] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” Proceedings. International
Conference on Software Maintenance (Cat. No. 98CB36272), pp.
368–377, 1998.

[11] D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: A
systematic review,” 2013.

[12] R. Koschke, “Survey of Research on Software Clones.”
[13] S. Ducasse, M. Rieger, and S. Demeyer, “A language independent

approach for detecting duplicated code,” Proceedings IEEE
International Conference on Software Maintenance - 1999
(ICSM’99). ’Software Maintenance for Business Change’ (Cat.
No.99CB36360), no. c, pp. 109–118, 1999.

[14] M. Rieger, S. Ducasse, and M. Lanza, “Insights into system-wide
code duplication,” in Proceedings - Working Conference on Reverse
Engineering, WCRE, 2004, pp. 100–109.

[15] M. Asaduzzaman and C. Roy, “VisCad: flexible code clone analysis
support for NiCad,” Proceeding of the 5th, pp. 77–78, 2011.

[16] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue, “Gemini: Mainte-
nance support environment based on code clone analysis,” Proceed-
ings - International Software Metrics Symposium, vol. 2002-Janua,
pp. 67–76, 2002.

[17] R. Tairas, J. Gray, and I. Baxter, “Visualization of clone detection
results,” Proc. ETX at OOPSLA, pp. 50–54, 2006.

[18] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue, “ARIES :
Refactoring Support Tool for Code Clone,” 3-WoSQ Proceedings of
the third workshop on Software quality, pp. 1–4, 2005.

[19] C. Kapser and M. W. Godfrey, “Aiding Comprehension of Cloning
Through Categorization,” Proceedings of the Principles of Software
Evolution, 7th International Workshop, pp. 85–94, 2004.

[20] C. Kapser and M. W. Godfrey, “Improved tool support for the inves-
tigation of duplication in software,” IEEE International Conference
on Software Maintenance, ICSM, vol. 2005, pp. 305–314, 2005.

[21] F. Li, G. Bayrak, K. Kernschmidt, and B. Vogel-Heuser, “Specifica-
tion of the requirements to support information technology-cycles in
the machine and plant manufacturing industry,” in IFAC Proceedings
Volumes (IFAC-PapersOnline), vol. 14, no. PART 1, 2012, pp. 1077–
1082.

[22] E. Duala-Ekoko and M. P. Robillard, “CloneTracker: Tool Support
for Code Clone Management.”

[23] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “En-
hancing clone-and-own with systematic reuse for developing software
variants,” Proceedings - 30th International Conference on Software
Maintenance and Evolution, ICSME 2014, pp. 391–400, 2014.

[24] M. Kim, L. Bergman, T. Lau, and D. Notkin, “An Ethnographic Study
of Copy and Paste Programming Practices in OOPL,” Empirical Soft-
ware Engineering, 2004. ISESE ’04. Proceedings. 2004 International
Symposium on, pp. 83–92, 2004.

[25] C. J. Kapser and M. W. Godfrey, “”cloning considered harmful” con-
sidered harmful: Patterns of cloning in software,” Empirical Software
Engineering, vol. 13, no. 6, pp. 645–692, 2008.

[26] B. Baker, “On finding duplication and near-duplication in large
software systems,” Proceedings of 2nd Working Conference on
Reverse Engineering, pp. 86–95, 1995.

[27] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A Multilinguistic
Token-Based Code Clone Detection System for Large Scale Source
Code.”

[28] K. A. Kontogiannis, R. Demori, E. Merlo, M. Galler, and M. Bern-
stein, “Pattern matching for clone and concept detection,” Automated
Software Engineering, vol. 3, no. 1-2, pp. 77–108, 1996.

[29] J. Mayrand, C. Leblanc, and E. Merlo, “Experiment on the automatic
detection of function clones in a\nsoftware system using metrics,”
Software Maintenance 1996, Proceedings., International Conference
on, pp. 244–253, 1996.

[30] A. Lozano, M. Wermelinger, and B. Nuseibeh, “Evaluating the harm-
fulness of cloning: A change based experiment,” Proceedings - ICSE
2007 Workshops: Fourth International Workshop on Mining Software
Repositories, MSR 2007, pp. 0–3, 2007.

[31] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto, “Soft-
ware quality analysis by code clones in industrial legacy software,”
Proceedings - International Software Metrics Symposium, vol. 2002-
Janua, pp. 87–94, 2002.

[32] J. Krinke, “Is cloned code more stable than non-cloned code?”
Proceedings - 8th IEEE International Working Conference on Source
Code Analysis and Manipulation, SCAM 2008, pp. 57–66, 2008.

[33] J. Krinke, “Is Cloned Code older than Non-Cloned Code?” 2011.
[34] F. Rahman, C. Bird, and P. Devanbu, “Clones: What is that smell?”

Empirical Software Engineering, vol. 17, no. 4-5, pp. 503–530, 2012.
[35] G. M. K. Selim, L. Barbour, W. Shang, B. Adams, A. E. Hassan,

and Y. Zou, “Studying the impact of clones on software defects,”
Proceedings - Working Conference on Reverse Engineering, WCRE,
pp. 13–21, 2010.

[36] N. Bettenburg, W. Shang, W. M. Ibrahim, B. Adams, Y. Zou, and
A. E. Hassan, “An empirical study on inconsistent changes to code
clones at the release level,” Science of Computer Programming,
vol. 77, no. 6, pp. 760–776, 2012.

[37] N. Göde and J. Harder, “Clone stability,” Proceedings of the European
Conference on Software Maintenance and Reengineering, CSMR, pp.
65–74, 2011.

[38] A. Walenstein, N. Jyoti, J. Li, Y. Yang, and A. Lakhotia, “Problems
creating task-relevant clone detection reference data,” in Proceedings
- Working Conference on Reverse Engineering, WCRE, vol. 2003-
Janua, 2003, pp. 285–294.

[39] G. Norman, “Likert scales, levels of measurement and the ”laws” of
statistics,” Advances in Health Sciences Education, vol. 15, no. 5, pp.
625–632, 2010.

[40] H. A. Kurdi, “Review on Aspect Oriented Programming,” vol. 4,
no. 9, pp. 22–27, 2013.

[41] K. Bengtsson, B. Lennartson, O. Ljungkrantz, and C. Yuan, “Devel-
oping control logic using aspect-oriented programming and sequence
planning,” Control Engineering Practice, vol. 21, no. 1, pp. 12–22,
2013.

[42] K. O. McGraw and S. P. Wong, “Forming inferences about some
intraclass correlations coefficients,” Psychological Methods, vol. 1,
no. 1, pp. 30–46, 1996.

[43] D. V. Cicchetti, “Guidelines, criteria, and rules of thumb for evaluat-
ing normed and standardized assessment instruments in psychology,”
Psychological Assessment, vol. 6, no. 4, pp. 284–290, 1994.

[44] P. H. Westfall, R. D. Tobias, and R. D. Wolfinger, Multiple compar-
isons and multiple tests using SAS. SAS Institute, 2011.

[45] T. Wang, M. Harman, Y. Jia, and J. Krinke, “Searching for
better configurations: a rigorous approach to clone evaluation,”
Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering - ESEC/FSE 2013, p. 455, 2013.

